Matlab solving a system of equations
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
So I have a set of equations listed below. The varying number is the value of x which goes between -0.5 and 0.5 in increments of 0.1. This is then added to 0.153 to give me a vector of values for b. These values need to be then inserted into my equations and solved.
a = 1.4;
x = -0.5:0.1:0.5;
b = 0.153 + x.^2;
eqn1= Px == dx.*75451.26;
eqn2= dx == (0.183.*578.8.*0.403)/b;
eqn3= Px == dx.*287.*Tx;
eqn4= Tx == 300/(1+0.2.*Mx.^2);
eqn5= Vx == Mx.*(401.8.*Tx).^0.5;
sol = vpasolve(eqn1,eqn2,eqn3,eqn4,eqn5);
Here are my 5 equations
0 commentaires
Réponses (1)
Alan Stevens
le 16 Mar 2021
Parameters, dx, Px, Tx, Mx and Vx can be evaluated simply as follows:
a = 1.4;
x = -0.5:0.1:0.5;
b = 0.153 + x.^2;
dx = (0.183.*578.8.*0.403)./b;
Px = dx.*75451.26;
% Tx = Px./(dx.*287); But this means Tx, Mx and Vx just have constant values:
Tx = 75451.26/287;
Mx = ((300./Tx - 1)*5).^0.5;
Vx = Mx.*(401.8.*Tx).^0.5;
disp(['Tx = ',num2str(Tx)])
disp(['Mx = ',num2str(Mx)])
disp(['Vx = ',num2str(Vx)])
plot(x,Px,'--o'),grid
xlabel('x'),ylabel('Px')
6 commentaires
Alan Stevens
le 16 Mar 2021
With your latest model you can no longer separate the equations - you need an iterative solution. The folowing uses fminsearch. Only you can decide if the resulting values are sensible:
a = 1.4;
x = -0.5:0.05:0.5;
b0 = 0.153;
Te = 300./(120000./7000).^(0.4./1.4);
density = 7000./(287.*Te) ;
M = ((((120000./7000).^(0.4./1.4))-1)./0.2).^0.5 ;
Ve = M.*((a.*287.*Te).^0.5);
dx0 = density.*Ve.*(0.403./b0)./ Ve;
Px0 = (7000.*(dx0.^a))./(density.^a);
Tx0 = Px0./(287.*dx0);
Mx0 = (((300./Tx0)-1)/0.2).^0.5;
Vx0 = Mx0.*((287.*1.4.*Tx0).^0.5);
K0 = [dx0; Px0; Tx0; Mx0; Vx0]; % Initial guesses
K = zeros(5,numel(x));
for i = 1:numel(x)
K(:,i) = fminsearch(@(K)fn(K,x(i)),K0);
end
% Extract variables
dx = K(1,:);
Px = K(2,:);
Tx = K(3,:);
Mx = K(4,:);
Vx = K(5,:);
plot(x,Mx,'--o'),grid
xlabel('x'),ylabel('Mx')
axis([min(x) max(x) 0 3])
function F = fn(K,x)
a = 1.4;
b = 0.153 + x.^2;
Te = 300./(120000./7000).^(0.4./1.4);
density = 7000./(287.*Te) ;
M = ((((120000./7000).^(0.4./1.4))-1)./0.2).^0.5 ;
Ve = M.*((a.*287.*Te).^0.5);
dx = K(1);
Px = K(2);
Tx = K(3);
Mx = K(4);
Vx = K(5);
dxn = density.*Ve.*(0.403./b)./ Vx;
Pxn = (7000.*(dxn.^a))./(density.^a);
Txn = Pxn./(287.*dxn);
Mxn = (((300./Txn)-1)/0.2).^0.5;
Vxn = Mxn.*((287.*1.4.*Txn).^0.5);
F = norm(dxn-dx)+norm(Pxn-Px)+norm(Txn-Tx)+norm(Mxn-Mx)+norm(Vxn-Vx);
end
Voir également
Catégories
En savoir plus sur Logical dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!