Error Using fitnlm Function
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Ricardo Gutierrez
le 19 Mar 2021
Réponse apportée : Star Strider
le 19 Mar 2021
function regresion_parametros_secador
clc, clear, clear all
TR =[0.422103409 0.42981426 0.437540563 0.445266867 0.45299317 0.460719473 0.468445777 0.47617208 0.483898384 0.491624687 0.499350991 0.507077294 0.514803597 0.522529901 0.530256204 0.537982508 0.545708811 0.553435115 0.561161418 0.568887721 0.576614025 0.592066632 0.607519238 0.622971845 0.638424452 0.653877059 0.669329666 0.684782273 0.70023488 0.715687486 0.731140093 0.7465927 0.762045307 0.777497914 0.792950521 0.808403128 0.823855734 0.839308341 0.854760948 0.870213555 0.885666162 0.901118769 0.916571376 0.932023982 0.947476589 0.962929196 0.978381803 0.99383441 0.99993819];
HFG =[2500.9 2489.1 2477.2 2465.3 2453.5 2441.7 2429.8 2417.9 2406.0 2394.0 2382.0 2369.8 2357.6 2345.4 2333.0 2320.6 2308.0 2295.3 2282.5 2269.5 2256.4 2229.7 2202.1 2173.7 2144.2 2113.7 2081.9 2048.8 2014.2 1977.9 1939.7 1899.7 1857.3 1812.7 1765.4 1715.1 1661.6 1604.4 1543.0 1476.7 1404.6 1325.7 1238.4 1140.1 1027.3 892.7 719.8 443.8 0.0];
modelfun = @(p,HFG) (exp((p(1)+p(2)*(log(1./TR))^0.1+p(3)/TR.^2+p(4)/TR.^3+p(5)/TR.^4)^0.5));
beta0 = [0 53.63746882 0.01601773 0.031311254 0.071298912];
mdl = fitnlm(TR,HFG,modelfun,beta0)
end
%ERROR MESSAGE%
Error using nlinfit (line 205)
Error evaluating model function
'@(p,HFG)(exp((p(1)+p(2)*(log(1./TR))^0.1+p(3)/TR.^2+p(4)/TR.^3+p(5)/TR.^4)^0.5))'.
Error in NonLinearModel/fitter (line 1123)
nlinfit(X,y,F,b0,opts,wtargs{:},errormodelargs{:});
Error in classreg.regr.FitObject/doFit (line 94)
model = fitter(model);
Error in NonLinearModel.fit (line 1430)
model = doFit(model);
Error in fitnlm (line 94)
model = NonLinearModel.fit(X,varargin{:});
Error in regresion_parametros_secador (line 14)
mdl = fitnlm(TR,HFG,modelfun,beta0)
Caused by:
Error using ^
One argument must be a square matrix and the other must be a scalar. Use POWER (.^) for elementwise
power.
>>
0 commentaires
Réponse acceptée
Star Strider
le 19 Mar 2021
Use element-wise operations on every applicable operation in ‘modelfun’ and transpose ‘modelfun’ to return a column vector, and it works:
TR =[0.422103409 0.42981426 0.437540563 0.445266867 0.45299317 0.460719473 0.468445777 0.47617208 0.483898384 0.491624687 0.499350991 0.507077294 0.514803597 0.522529901 0.530256204 0.537982508 0.545708811 0.553435115 0.561161418 0.568887721 0.576614025 0.592066632 0.607519238 0.622971845 0.638424452 0.653877059 0.669329666 0.684782273 0.70023488 0.715687486 0.731140093 0.7465927 0.762045307 0.777497914 0.792950521 0.808403128 0.823855734 0.839308341 0.854760948 0.870213555 0.885666162 0.901118769 0.916571376 0.932023982 0.947476589 0.962929196 0.978381803 0.99383441 0.99993819];
HFG =[2500.9 2489.1 2477.2 2465.3 2453.5 2441.7 2429.8 2417.9 2406.0 2394.0 2382.0 2369.8 2357.6 2345.4 2333.0 2320.6 2308.0 2295.3 2282.5 2269.5 2256.4 2229.7 2202.1 2173.7 2144.2 2113.7 2081.9 2048.8 2014.2 1977.9 1939.7 1899.7 1857.3 1812.7 1765.4 1715.1 1661.6 1604.4 1543.0 1476.7 1404.6 1325.7 1238.4 1140.1 1027.3 892.7 719.8 443.8 0.0];
modelfun = @(p,HFG) (exp(sqrt(p(1)+p(2).*(log(1./TR)).^0.1+p(3)./TR.^2+p(4)./TR.^3+p(5)./TR.^4))).';
beta0 = [0 53.63746882 0.01601773 0.031311254 0.071298912];
mdl = fitnlm(TR,HFG,modelfun,beta0)
producing:
mdl =
Nonlinear regression model:
y ~ F(p,HFG)
Estimated Coefficients:
Estimate SE tStat pValue
________ _______ _______ __________
b1 -5.3764 0.53639 -10.023 6.2155e-13
b2 80.604 1.2895 62.51 1.2803e-44
b3 -12.018 1.5173 -7.9205 5.2486e-10
b4 6.8052 1.0612 6.413 8.3294e-08
b5 -1.1397 0.2096 -5.4375 2.2468e-06
Number of observations: 49, Error degrees of freedom: 44
Root Mean Squared Error: 12.4
R-Squared: 1, Adjusted R-Squared 1
F-statistic vs. zero model: 2.6e+05, p-value = 3.84e-97
.
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Regression dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!