Using ode45 to solve a Non linear ode with multiple variables?

2 vues (au cours des 30 derniers jours)
I have the following script file that uses ode45 to solve an equation
clear all;
clc;
clf;
tic;
tspan = 0:0.0033:100;
a=55*(pi/180);
b=0;
k0 = [a; b];
[t,k] = ode45(@pend_k,tspan,k0);
K1 = k(:,1);
K2 = k(:,2);
plot(t,K2)
and I have the function, pend_k, that i call:
function kdot = pend_k(t,k)
kdot = [ k(2); (A*k(2) - B*k(1)) ];
end
But I need to define A and B, which involve Several Variables:
A = 2*(3*p1*t.^2 + 2*p2*t + p3)/(p1*t.^3 + p2*t.^2 + p3*t + p4); % t = tspan
% where,
p1 = 0.000000001906*a^3 + (-0.0000007948)*a^2 + 0.00009188*a + (-0.003481)
p2 = 0.00000915*a^2 + (-0.0009381)*a + 0.05331
p3 = (-0.0001542)*a^2 + (-0.006078)*a + (-2.089)
p4 = (0.9388)*a + 4.546
% and
B = ( ((77.4474)/(1 + (1/16)*a^2 + (11/3072)*a^4 + (173/737280)*a^6)).^2 + ((A.^2)/2) - ((6*p1*t + 2*p2)/(p1*t.^3 + p2*t.^2 + p3*t + p4)) )
How can I include A and B into pend_k?
Do I have to write a bunch of other functions within pend_k?

Réponse acceptée

Sulaymon Eshkabilov
Sulaymon Eshkabilov le 26 Mar 2021
Here is the corrected completed code:
tic;
tspan = 0:0.0033:100;
a=55*(pi/180);
b=0;
k0 = [a; b];
[t,k] = ode45(@pend_k,tspan,k0);
K1 = k(:,1);
K2 = k(:,2);
plot(t,K2)
function kdot = pend_k(t,k)
a=55*(pi/180);
b=0;
p1 = 0.000000001906*a^3 + (-0.0000007948)*a^2 + 0.00009188*a + (-0.003481);
p2 = 0.00000915*a^2 + (-0.0009381)*a + 0.05331;
p3 = (-0.0001542)*a^2 + (-0.006078)*a + (-2.089);
p4 = (0.9388)*a + 4.546;
A = 2*(3*p1*t.^2 + 2*p2*t + p3)/(p1*t.^3 + p2*t.^2 + p3*t + p4); % t = tspan
B = ( ((77.4474)/(1 + (1/16)*a^2 + (11/3072)*a^4 + (173/737280)*a^6)).^2 + ((A.^2)/2) - ((6*p1*t + 2*p2)/(p1*t.^3 + p2*t.^2 + p3*t + p4)) );
kdot = [ k(2); (A*k(2) - B*k(1)) ];
end
  2 commentaires
Star Strider
Star Strider le 27 Mar 2021
@Nivedita Tanksali — I notified MathWorks.
Delete this Comment when the problem is fixed.
Nivedita Tanksali
Nivedita Tanksali le 27 Mar 2021
Okay! Thanks!

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Systems of Nonlinear Equations dans Help Center et File Exchange

Produits


Version

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by