How to plot trajectory of angles at varying x, y, and z position
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hwajin Choi
le 6 Avr 2021
Commenté : Alan Stevens
le 6 Avr 2021
Hello,
I want to plot trajectory of angles theta1, theta2, and theta3 vary depending on xyz position in 2D or 3D.
I got the theta1,2 and 3 functions having x, y, and z variables from the last 3 lines at the bottom of the code.
I would appreciate your help.
function [theta1, theta2, theta3] = trajectory(x,y,z)
syms theta1 theta2 theta3 x y z
L = 0.7;
l = 1.3;
wb = 0.2;
sp = 0.08;
wp = 0.02;
up = 0.05;
a = wb - up;
b = sp/2 - (sqrt(3)/2)*wb;
c = wp - wb/2;
eqn1 = 2*L*(y+a)*cos(theta1) + 2*z*L*sin(theta1) + x^2 + y^2 + z^2 + a^2 + L^2 + 2*y*a - l^2 == 0
eqn2 = -L*(sqrt(3)*(x+b)+y+c)*cos(theta2) + 2*z*L*sin(theta2) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 + 2*x*b + 2*y*c - l^2 == 0
eqn3 = L*(sqrt(3)*(x-b)-y-c)*cos(theta3) + 2*z*L*sin(theta3) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 - 2*x*b + 2*y*c - l^2 == 0
theta1=solve(eqn1,theta1)
theta2=solve(eqn2,theta2)
theta3=solve(eqn3,theta3)
theta1 = theta1(2)
theta2 = theta2(2)
theta3 = theta3(2)
0 commentaires
Réponse acceptée
Alan Stevens
le 6 Avr 2021
Do you mean something like this (where I've obviously used arbitrary data):
x = linspace(0,1,10);
y = linspace(0,2,10);
z = linspace(0,3,10);
THETA = zeros(3,10);
theta = [0,0,0];
for i = 1:10
theta0 = theta;
THETA(:,i) = fminsearch(@(THETA) trajectory(THETA,x(i),y(i),z(i)), theta0);
end
theta1 = THETA(1,:);
theta2 = THETA(2,:);
theta3 = THETA(3,:);
plot3(theta1,theta2,theta3,'-o'),grid
xlabel('x'),ylabel('y'),zlabel('z')
function F = trajectory(THETA, x,y,z)
theta1 = THETA(1);
theta2 = THETA(2);
theta3 = THETA(3);
L = 0.7;
l = 1.3;
wb = 0.2;
sp = 0.08;
wp = 0.02;
up = 0.05;
a = wb - up;
b = sp/2 - (sqrt(3)/2)*wb;
c = wp - wb/2;
F1 = 2*L*(y+a)*cos(theta1) + 2*z*L*sin(theta1) + x^2 + y^2 + z^2 + a^2 + L^2 + 2*y*a - l^2;
F2 = -L*(sqrt(3)*(x+b)+y+c)*cos(theta2) + 2*z*L*sin(theta2) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 + 2*x*b + 2*y*c - l^2;
F3 = L*(sqrt(3)*(x-b)-y-c)*cos(theta3) + 2*z*L*sin(theta3) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 - 2*x*b + 2*y*c - l^2;
F = norm(F1) + norm(F2) + norm(F3);
end
4 commentaires
Alan Stevens
le 6 Avr 2021
Like the following
theta1 = linspace(0,pi/2,20);
theta2 = linspace(0,3*pi/2,20);
theta3 = linspace(0,pi,20);
xyz = zeros(3,10);
xyz(:,1) = [0;0;0];
for i = 1:10
xyz0 = xyz(:,i);
xyz(:,i) = fminsearch(@(xyz) trajectory(xyz,theta1(i),theta2(i),theta3(i)), xyz0);
end
x =xyz(1,:);
y = xyz(2,:);
z = xyz(3,:);
plot3(x,x,z,'-o'),grid
xlabel('x'),ylabel('y'),zlabel('z')
function F = trajectory(xyz, theta1,theta2,theta3)
x = xyz(1);
y = xyz(2);
z = xyz(3);
L = 0.7;
l = 1.3;
wb = 0.2;
sp = 0.08;
wp = 0.02;
up = 0.05;
a = wb - up;
b = sp/2 - (sqrt(3)/2)*wb;
c = wp - wb/2;
F1 = 2*L*(y+a)*cos(theta1) + 2*z*L*sin(theta1) + x^2 + y^2 + z^2 + a^2 + L^2 + 2*y*a - l^2;
F2 = -L*(sqrt(3)*(x+b)+y+c)*cos(theta2) + 2*z*L*sin(theta2) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 + 2*x*b + 2*y*c - l^2;
F3 = L*(sqrt(3)*(x-b)-y-c)*cos(theta3) + 2*z*L*sin(theta3) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 - 2*x*b + 2*y*c - l^2;
F = norm(F1) + norm(F2) + norm(F3);
end
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Logical dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!