How to plot the least square method?

2 vues (au cours des 30 derniers jours)
RoBoTBoY
RoBoTBoY le 24 Avr 2021
Commenté : Star Strider le 24 Avr 2021
Hello!
I have these measurements of an experiment where Kp and Kd are the coefficients of PD controller and model displays critical damping at these measurements.
I want to find the ideal curve with respect to least sqruare method.
How to do that?
I tried that but I don't know if is true.
plot(Kd,Kp,'go')
hold on
f = fit(Kd,Kp,'poly2');
plot(f,Kd,Kp,'b--')
xlim([0.2,1.3])
ylim([-2,22])
legend('Location','NorthWest');
hold off
  3 commentaires
RoBoTBoY
RoBoTBoY le 24 Avr 2021
How do I connect these points with a curve?
So this diagram I drew is wrong?
Star Strider
Star Strider le 24 Avr 2021
'How do I connect these points with a curve?
Whatever works, unless you have a mathematical model of the process that created them, and in that instance, use that mathematical model with a linear or nonlinear parameter estimation function. Then, using that function and the estimated parameters, calculate the fit and plot the line using those data.
One option is a spline fit —
Kd_Kp = readtable('https://www.mathworks.com/matlabcentral/answers/uploaded_files/595780/Kd_Kp.xlsx')
Kd_Kp = 4×2 table
Kp Kd __ ___ 1 0.3 5 0.6 10 0.8 20 1.2
Kd_v = linspace(min(Kd_Kp.Kd), max(Kd_Kp.Kd));
Kp_v = spline(Kd_Kp.Kd, Kd_Kp.Kp, Kd_v);
figure
scatter(Kd_Kp.Kd, Kd_Kp.Kp, 'filled')
hold on
plot(Kd_v, Kp_v, '-r')
hold off
xlabel('K_d')
ylabel('K_p')
grid
legend('Data','Spline Fit', 'Location','best')
It all depends on the result you want, and the process that created the data.

Connectez-vous pour commenter.

Réponses (0)

Catégories

En savoir plus sur Smoothing dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by