Solving linear system - but using only parts of the Matrix

2 vues (au cours des 30 derniers jours)
Christian S.
Christian S. le 3 Mai 2021
Commenté : Star Strider le 4 Mai 2021
Hi everyone,
I'm trying to solve a linear system of equations but want to use only selectet rows for that operation.
For example:
D=
0 0 0 0 0.345265357599750 0.457309520629080 0.548726230994530 0 0 0 0
0 0 0 0 0.200398189744228 0.345265357599750 0.457309520629080 0 0 0 0
0 0 0 0 -0.00530900651840216 0.200398189744228 0.345265357599750 0 0 0 0
0 0 0 0 -0.369187964058863 -0.00530900651840216 0.200398189744228 0 0 0 0
0 0 0 0 -1.19314718055995 -0.369187964058863 -0.00530900651840216 0 0 0 0
0 0 0 0 -0.369187964058863 -1.19314718055995 -0.369187964058863 0 0 0 0
0 0 0 0 -0.00530900651840216 -0.369187964058863 -1.19314718055995 0 0 0 0
0 0 0 0 0.200398189744228 -0.00530900651840216 -0.369187964058863 0 0 0 0
0 0 0 0 0.345265357599750 0.200398189744228 -0.00530900651840216 0 0 0 0
0 0 0 0 0.457309520629080 0.345265357599750 0.200398189744228 0 0 0 0
0 0 0 0 0.548726230994530 0.457309520629080 0.345265357599750 0 0 0 0
U=
0
0
0
0
1.14881496080949e-07
3.47991801628408e-07
1.14881496080949e-07
0
0
0
0
I want to perform the operation
P=D\U
But only with the 3 rows that contain a result in the variable U.
P should be
P=
0
0
0
0
-7.42753614188724e-09
-2.87062227792614e-07
-7.42753614188723e-09
0
0
0
0
Can somebody help me, how to program this?
Very best
Christian

Réponse acceptée

Star Strider
Star Strider le 3 Mai 2021
The lsqr function is appropriate here —
D = [...
0 0 0 0 0.345265357599750 0.457309520629080 0.548726230994530 0 0 0 0
0 0 0 0 0.200398189744228 0.345265357599750 0.457309520629080 0 0 0 0
0 0 0 0 -0.00530900651840216 0.200398189744228 0.345265357599750 0 0 0 0
0 0 0 0 -0.369187964058863 -0.00530900651840216 0.200398189744228 0 0 0 0
0 0 0 0 -1.19314718055995 -0.369187964058863 -0.00530900651840216 0 0 0 0
0 0 0 0 -0.369187964058863 -1.19314718055995 -0.369187964058863 0 0 0 0
0 0 0 0 -0.00530900651840216 -0.369187964058863 -1.19314718055995 0 0 0 0
0 0 0 0 0.200398189744228 -0.00530900651840216 -0.369187964058863 0 0 0 0
0 0 0 0 0.345265357599750 0.200398189744228 -0.00530900651840216 0 0 0 0
0 0 0 0 0.457309520629080 0.345265357599750 0.200398189744228 0 0 0 0
0 0 0 0 0.548726230994530 0.457309520629080 0.345265357599750 0 0 0 0];
U = [...
0
0
0
0
1.14881496080949e-07
3.47991801628408e-07
1.14881496080949e-07
0
0
0
0];
ix = U~=0;
format long g
P = lsqr(D(ix,:),U(ix))
lsqr converged at iteration 2 to a solution with relative residual 1e-15.
P = 11×1
0 0 0 0 -7.42753614188729e-09 -2.87062227792613e-07 -7.42753614188729e-09 0 0 0
format short
.
  2 commentaires
Christian S.
Christian S. le 4 Mai 2021
It works perfectly! Thank you very much Star Strider!
Very best
Christian
Star Strider
Star Strider le 4 Mai 2021
As always, my pleasure!

Connectez-vous pour commenter.

Plus de réponses (0)

Produits


Version

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by