Extracting the individual filters in a crossover filter
12 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have set up a crossover filter like so:
cof = crossoverFilter(1, 5000, 48, 44100);
I know I can visualize the two constituent filters like so:
visualize(cof);
But for publication purposes, I would like to change the visualization quite a bit. That's why I'm looking for a way to extract the individual filters from the crossover filter in some way, but I cannot seem to figure it out. I even tried going through the code of the visualize function, but I am having a hard time making sense of it.
Am I missing something? Or is there really no easy way to get to the filter coefficients?
0 commentaires
Réponse acceptée
jibrahim
le 7 Mai 2021
Hi Simon,
There is no documented way to get the individual filters. However, there is a hidden function that should help you:
numCrossovers = 2;
cof = crossoverFilter(numCrossovers, [300 5000], 48, 44100);
% Get the SOS filter coefficients for the 3 filters
[b1,a1,b2,a2,b3,a3] = getFilterCoefficients(cof,numCrossovers);
% Use fvtool to visualize
fvtool([b1,a1],[b2,a2],[b3,a3])
% Visualize using dynamic filter visualizer
fv = dsp.DynamicFilterVisualizer('SampleRate',cof.SampleRate);
fv(b1,a1,b2,a2,b3,a3)
4 commentaires
jibrahim
le 4 Déc 2023
This method is not documented as of yet.
[b1,a1,b2,a2,b3,a3] = getFilterCoefficients(cof,numCrossovers);
b1 represents the numerator coefficients of the filter filter. a1 represents the denominator of the first filter. Each filter is a SOS filter, so b1 is N-by-3, where N is the number of sections in the SOS filter. a1 is N-by-3.
b2 and a2 represent the numerator and denominator coefficients of the second SOS filter, and so on.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Multirate and Multistage Filters dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!