Root locus imaginary axis intersection

18 vues (au cours des 30 derniers jours)
Ande Mandoyi
Ande Mandoyi le 14 Juin 2021
Commenté : Star Strider le 15 Juin 2021
Other than using interactive data cursors, is there anyway of finding the point where the root locus intersects the imaginary axis?

Réponse acceptée

Star Strider
Star Strider le 14 Juin 2021
Try something like this —
sys = tf([3 1],[9 7 5 6]); % Example From The Documentation
[r,k] = rlocus(sys)
r =
-0.9406 + 0.0000i -0.8744 + 0.0000i -0.8685 + 0.0000i -0.8620 + 0.0000i -0.8550 + 0.0000i -0.8475 + 0.0000i -0.8394 + 0.0000i -0.8306 + 0.0000i -0.8212 + 0.0000i -0.8111 + 0.0000i -0.8003 + 0.0000i -0.7888 + 0.0000i -0.7766 + 0.0000i -0.7636 + 0.0000i -0.7500 + 0.0000i -0.7358 + 0.0000i -0.7209 + 0.0000i -0.7055 + 0.0000i -0.6896 + 0.0000i -0.6734 + 0.0000i -0.6569 + 0.0000i -0.6402 + 0.0000i -0.6236 + 0.0000i -0.6071 + 0.0000i -0.5908 + 0.0000i -0.5748 + 0.0000i -0.5593 + 0.0000i -0.5443 + 0.0000i -0.5299 + 0.0000i -0.5161 + 0.0000i -0.5030 + 0.0000i -0.4906 + 0.0000i -0.4789 + 0.0000i -0.4679 + 0.0000i -0.4576 + 0.0000i -0.4480 + 0.0000i -0.4390 + 0.0000i -0.4306 + 0.0000i -0.4229 + 0.0000i -0.4157 + 0.0000i -0.4090 + 0.0000i -0.4029 + 0.0000i -0.3972 + 0.0000i -0.3919 + 0.0000i -0.3871 + 0.0000i -0.3826 + 0.0000i -0.3785 + 0.0000i -0.3748 + 0.0000i -0.3713 + 0.0000i -0.3681 + 0.0000i -0.3652 + 0.0000i -0.3334 + 0.0000i -0.3333 + 0.0000i 0.0814 + 0.8379i 0.0483 + 0.9140i 0.0453 + 0.9212i 0.0421 + 0.9291i 0.0386 + 0.9377i 0.0349 + 0.9470i 0.0308 + 0.9573i 0.0264 + 0.9686i 0.0217 + 0.9809i 0.0167 + 0.9943i 0.0113 + 1.0090i 0.0055 + 1.0251i -0.0006 + 1.0426i -0.0071 + 1.0617i -0.0139 + 1.0826i -0.0210 + 1.1053i -0.0284 + 1.1300i -0.0362 + 1.1568i -0.0441 + 1.1859i -0.0522 + 1.2175i -0.0605 + 1.2515i -0.0688 + 1.2883i -0.0771 + 1.3278i -0.0853 + 1.3703i -0.0935 + 1.4158i -0.1015 + 1.4644i -0.1092 + 1.5162i -0.1167 + 1.5714i -0.1239 + 1.6299i -0.1308 + 1.6920i -0.1374 + 1.7578i -0.1436 + 1.8273i -0.1494 + 1.9006i -0.1549 + 1.9780i -0.1601 + 2.0594i -0.1649 + 2.1452i -0.1694 + 2.2354i -0.1736 + 2.3302i -0.1775 + 2.4299i -0.1810 + 2.5345i -0.1844 + 2.6442i -0.1875 + 2.7594i -0.1903 + 2.8802i -0.1929 + 3.0069i -0.1953 + 3.1397i -0.1976 + 3.2789i -0.1996 + 3.4247i -0.2015 + 3.5775i -0.2032 + 3.7375i -0.2048 + 3.9052i -0.2063 + 4.0807i -0.2222 +81.7209i Inf + 0.0000i 0.0814 - 0.8379i 0.0483 - 0.9140i 0.0453 - 0.9212i 0.0421 - 0.9291i 0.0386 - 0.9377i 0.0349 - 0.9470i 0.0308 - 0.9573i 0.0264 - 0.9686i 0.0217 - 0.9809i 0.0167 - 0.9943i 0.0113 - 1.0090i 0.0055 - 1.0251i -0.0006 - 1.0426i -0.0071 - 1.0617i -0.0139 - 1.0826i -0.0210 - 1.1053i -0.0284 - 1.1300i -0.0362 - 1.1568i -0.0441 - 1.1859i -0.0522 - 1.2175i -0.0605 - 1.2515i -0.0688 - 1.2883i -0.0771 - 1.3278i -0.0853 - 1.3703i -0.0935 - 1.4158i -0.1015 - 1.4644i -0.1092 - 1.5162i -0.1167 - 1.5714i -0.1239 - 1.6299i -0.1308 - 1.6920i -0.1374 - 1.7578i -0.1436 - 1.8273i -0.1494 - 1.9006i -0.1549 - 1.9780i -0.1601 - 2.0594i -0.1649 - 2.1452i -0.1694 - 2.2354i -0.1736 - 2.3302i -0.1775 - 2.4299i -0.1810 - 2.5345i -0.1844 - 2.6442i -0.1875 - 2.7594i -0.1903 - 2.8802i -0.1929 - 3.0069i -0.1953 - 3.1397i -0.1976 - 3.2789i -0.1996 - 3.4247i -0.2015 - 3.5775i -0.2032 - 3.7375i -0.2048 - 3.9052i -0.2063 - 4.0807i -0.2222 -81.7209i Inf + 0.0000i
k = 1×53
0 0.5932 0.6491 0.7103 0.7772 0.8504 0.9305 1.0182 1.1141 1.2190 1.3339 1.4595 1.5970 1.7475 1.9121 2.0922 2.2893 2.5050 2.7410 2.9992 3.2817 3.5908 3.9291 4.2993 4.7043 5.1474 5.6323 6.1629 6.7435 7.3787
fre2 = isfinite(real(r(2,:)));
fim2 = isfinite(imag(r(2,:)));
fidx2 = fre2 & fim2;
fre3 = isfinite(real(r(3,:)));
fim3 = isfinite(imag(r(3,:)));
fidx3 = fre3 & fim3;
v2 = interp1(real(r(2,fidx2)), imag(r(2,fidx2)), 0, 'linear','extrap')
v2 = 1.0409
k2 = interp1(imag(r(2,fidx2)), k(fidx2), v2, 'linear','extrap')
k2 = 1.5835
v3 = interp1(real(r(3,fidx3)), imag(r(3,fidx3)), 0, 'linear','extrap')
v3 = -1.0409
k3 = interp1(imag(r(3,fidx3)), k(fidx3), v3, 'linear','extrap')
k3 = 1.5835
figure
plot(real(r(1,:)),imag(r(1,:)), '-g')
hold on
plot(real(r(2,:)),imag(r(2,:)), '-b')
plot(real(r(3,:)),imag(r(3,:)), '-r')
plot(0, v2, 'sr')
plot(0, v3, 'sb')
hold off
grid
ylim([-6 6])
.
  2 commentaires
Paul
Paul le 15 Juin 2021
Will this solution work if a branch of the root locus crosses the imaginary axis twice? For example if
sys = tf([3 1],[9 7 5 6]) * tf(20,[1 20])
Can this solution be generalized to loop over all of the rows of r?
As I understand it, this solution assumes that the rows of r are, in some sense, smooth. I think that rlocus() tries to ensure this, but I'm not sure it's guaranteed.
Star Strider
Star Strider le 15 Juin 2021
This is prototype code.
It simply shows the correct approach, and would likely have to be adapted to specific situations that did not follow the same sort of loci.

Connectez-vous pour commenter.

Plus de réponses (0)

Tags

Produits


Version

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by