How to solve a complicated equation?
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Cola
le 7 Juil 2021
Modifié(e) : David Goodmanson
le 16 Juil 2021
There is a Equation G. How to obtain the values of α and β when G=0?
G=-(-Omega^3*tau + (alpha + beta)*Omega)^2 - (Omega^2 - alpha*f)^2.
The answer:
alpha = Omega^2*cos(Omega*tau)/f;
beta = Omega*(f*sin(Omega*tau) - Omega*cos(Omega*tau))/f.

CAN anyone help me with this issue??? Thanks!!!
4 commentaires
Réponse acceptée
David Goodmanson
le 16 Juil 2021
Modifié(e) : David Goodmanson
le 16 Juil 2021
Hi Cola,
Since there is one equation and two unknowns, it must be possible to define, say, beta in terms of alpha, where alpha can be anything. For G = 0 we have
(-Om^3*t + (a+b)*Om)^2 = -(Om^2 - a*f)^2
so
-Om^3*t + (a+b)*Om = +-*i*(Om^2 - a*f)
where there are obvious notational substitutions for Omega, tau, alpha, beta, and the +- choice gives two different solutions. Solving for b,
b = (1/Om)*( Om^3*t -a*Om +-i*(Om^2 - a*f) )
where 'a' can be anything. Solving instead for a (this does not give a different family of solutions, rather the same ones expressed differently) gives
a = (Om^3*t +-i*Om^2 -b*Om)/(Om +-i*f)
Here the sign in the denominator (+ or -) has to match the sign in the denominator, and b can be anything. The choice b = 0 gives the solutions from Star Strider.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



