fsolve

18 vues (au cours des 30 derniers jours)
Liber-T
Liber-T le 17 Juin 2011
Is there a way to accelerate the fsolve function, with the least lost of precision possible. In:
beta(n+1)=fsolve(F,beta(n))
  6 commentaires
Liber-T
Liber-T le 20 Juin 2011
F=@(x)10000000000000*det([0 besselj(0,(sqrt(Ko^2*Ed-(x)^2))*b) (i*bessely(0,sqrt((Ko^2*Ed-(x)^2))*b)+besselj(0,sqrt((Ko^2*Ed-(x)^2))*b)) -(i*bessely(0,sqrt((Ko^2-(x)^2))*b)+besselj(0,sqrt((Ko^2-(x)^2))*b));y(length(t),1) -besselj(0,(sqrt(Ko^2*Ed-(x)^2))*a) -(i*bessely(0,sqrt((Ko^2*Ed-(x)^2))*a)+besselj(0,sqrt((Ko^2*Ed-(x)^2))*a)) 0;0 -Ed*besselj(1,(sqrt(Ko^2*Ed-(x)^2))*b)/((sqrt(Ko^2*Ed-(x)^2))) -Ed*(i*bessely(1,sqrt((Ko^2*Ed-(x)^2))*b)+besselj(1,sqrt((Ko^2*Ed-(x)^2))*b))/((sqrt(Ko^2*Ed-(x)^2))) (i*bessely(1,sqrt((Ko^2-(x)^2))*b)+besselj(1,sqrt((Ko^2-(x)^2))*b))/((sqrt(Ko^2-(x)^2)));-(1-((e^2*ne0*besselj(0,mu1)/(me*Eo))/(omega*(omega-i*v))))*-y(length(t),2)/(((Ko^2*(1-((e^2*ne0*besselj(0,mu1)/(me*Eo))/(omega*(omega-i*v))))-(x)^2))) Ed*besselj(1,(sqrt(Ko^2*Ed-(x)^2))*a)/((sqrt(Ko^2*Ed-(x)^2))) Ed*(i*bessely(1,sqrt((Ko^2*Ed-(x)^2))*a)+besselj(1,sqrt((Ko^2*Ed-(x)^2))*a))/((sqrt(Ko^2*Ed-(x)^2))) 0]);
Liber-T
Liber-T le 20 Juin 2011
s=0.1
t=0.001
f=200000000
%a=0.013;
%b=0.015;
%Ed=4.52;
omega=f*2*pi;
%v/omega=t
v=t*omega;
omegap=omega/s;
Eo=8.85418782*10^-12;
muo=1.25663706*10^-6;
Ko=sqrt((omega^2)*Eo*muo);
Ep=1-((omegap^2)/(omega*(omega-i*v)));
The answer here is 8.4049+0.0038*i

Connectez-vous pour commenter.

Réponse acceptée

Sean de Wolski
Sean de Wolski le 17 Juin 2011
preallocate beta
beta = zeros(nmax+1,1);
beta(1) = beta_of_1;
for ii = 1:nmax
beta(ii+1) = fsolve(F,beta(ii));
end
EDIT more stuff:
You calculate:
  • 'sqrt((Ko^2-(x)^2))*b': 4x
  • 'sqrt((Ko^2*Ed-(x)^2))*a': 4x
  • the bessel functions multiple times a pop.
Turn your function handle into a function. Make each of these calculations once, then use them multiple times.
  1 commentaire
Liber-T
Liber-T le 17 Juin 2011
Thnks, but I already know that trick, is there something else for fsolve?

Connectez-vous pour commenter.

Plus de réponses (1)

Walter Roberson
Walter Roberson le 17 Juin 2011
fsolve() can be much faster if you can constrain the range to search in.
  2 commentaires
Liber-T
Liber-T le 17 Juin 2011
how do I constrain the range
Walter Roberson
Walter Roberson le 20 Juin 2011
Sorry it turns out that fsolve() has no way of constraining ranges. fzero() can operate over an interval, if your function has only one independent variable.

Connectez-vous pour commenter.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by