Constrained optimization: Artificial Bee Colony algorithm
Version 1.0.0 (6,8 ko) par
Rafal Szczepanski
Artificial Bee Colony algorithm supported by Deb's rules to handle constraints.
This is implementation of Artificial Bee Colony algorithm that can solve constrained optimization problems. To handle constraints the Deb's rules have been used to compare the actual and new solutions. The implementation of objective function that have to be optimized, has to return two values: main objective function (
) and violation function (
). The algorithm maximized
with subject to
.
The exmaple implementation solve the following optimization problem:
subject to:
where: M - number of dimensions (equal to 5 in this particular case)
For more information about the Artificial Bee Colony algorithm supported by Deb's rules refer to:
[1] Szczepanski, Rafal, et al. "Comparison of Constraint-handling Techniques Used in Artificial Bee Colony Algorithm for Auto-Tuning of State Feedback Speed Controller for PMSM." ICINCO (1). 2018.
Citation pour cette source
Szczepanski, Rafal, et al. “Comparison of Constraint-Handling Techniques Used in Artificial Bee Colony Algorithm for Auto-Tuning of State Feedback Speed Controller for PMSM.” Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics, SCITEPRESS - Science and Technology Publications, 2018, doi:10.5220/0006904002690276.
Compatibilité avec les versions de MATLAB
Créé avec
R2022a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS LinuxTags
Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
ArtificialBeeColonyAlgorithm
| Version | Publié le | Notes de version | |
|---|---|---|---|
| 1.0.0 |
