Hand Exoskeleton Optimization with Evolutionary Algorithms

Version 1.1.0 (1,55 Mo) par EvoLab
Hand Exoskeleton Optimization with Evolutionary Algorithms
47 téléchargements
Mise à jour 8 fév. 2024

Afficher la licence

We propose to optimize the link lengths of an underactuated hand exoskeleton with eighth of thirteen link lengths and one actuator input to achieve maximum force transmission on the finger joint by using Evolutionary Algorithm. In this project we use 2 different Evolutionary Algorithm (Genetic Algorithm and Big Bang-Big Crunch Algorithm).
Follow these steps to run the algorithm:
  1. Open the folder in MATLAB.
  2. Arrange the finger that you want to optimize from RUN_OPT file finger part
  3. Choose the optimization method by changing opMethod variable. Write GA for Genetic Algorithm and write BBBC for Big Bang-Big Crunch Algorithm
  4. Arrange the upperbounds and lowerbounds you can change it from RUN_OPT, UB (Upper Bounds) and LB (Lower Bounds) arrays.
  5. For Genetic algorithm settings (number of generation, number of individuals, number of variables, selection method, crossover method, crossover probability, mutation method, mutation probability, survival method, number of runs, starting sheet of excel) you can reach them in runIt funciton
  6. For Big Bang-Big Crunch Algorithm settings (number of generation, number of individuals, ) you can reach them in runBBBC funciton. For runs and starting sheet of excel you can reach them in tictoc funciton
Authors:
  • Barış Akbaş
  • Aleyna Söylemez
  • Hüseyin Taner Yüksel
  • Fabio Stroppa
  • Mine Sarac
Accepted from 2024 IEEE International Conference on Robotics and Automation

Citation pour cette source

EvoLab (2025). Hand Exoskeleton Optimization with Evolutionary Algorithms (https://www.mathworks.com/matlabcentral/fileexchange/157446-hand-exoskeleton-optimization-with-evolutionary-algorithms), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2023a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Tags Ajouter des tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.1.0

Big Bang-Big Crunch Algorithm added

1.0.2

description changed

1.0.1

description added, simulink added, image added

1.0.0