Deep Learning for Vehicle Tracking and Wheel Detection
Version 1.1.2 (81,1 Mo) par
Choi Youngsoo
Deep learning-based vehicle tracking and segmentation using SiamFC, DeepLabV3+, and Mask R-CNN for speed analysis.
The Vehicle Speed Analysis System is designed to automatically analyze the speed of vehicles in video footage. The project includes two main modules:
- Module 1 - Object Tracking:This module uses Siamese Fully Convolutional Networks (SiamFC) to track a target vehicle across frames. The system is enhanced with a Kalman filter to improve tracking accuracy under varying conditions such as occlusions, low resolution, and shape changes. The implementation uses MATLAB's Deep Learning Toolbox to integrate pre-trained models for efficient tracking.
- Module 2 - Instance Segmentation:This module focuses on precise segmentation of vehicle parts using DeepLabV3+ for semantic segmentation and Mask R-CNN for instance segmentation. The methodology is tailored to overcome challenges like scale variations and low resolution. A custom dataset, annotated for segmentation tasks, is used for model training and validation.
Key project highlights include:
- Deployment of deep learning models with MATLAB for tracking and segmentation.
- Comparative analysis of DeepLabV3+ and Mask R-CNN performance.
- Pretrained models for Module 2 can be downloaded from the following links:
This system demonstrates the potential of MATLAB's deep learning frameworks to solve complex computer vision tasks effectively.
Citation pour cette source
Choi Youngsoo (2025). Deep Learning for Vehicle Tracking and Wheel Detection (https://www.mathworks.com/matlabcentral/fileexchange/176278-deep-learning-for-vehicle-tracking-and-wheel-detection), MATLAB Central File Exchange. Extrait(e) le .
https://www.matlabexpo.com/kr/2023/proceedings.html
Compatibilité avec les versions de MATLAB
Créé avec
R2024b
Compatible avec les versions R2022a à R2024b
Plateformes compatibles
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
Module1
Module2
Module2/dataset_MaskRNN/New_labels
Module2/dataset_MaskRNN/imgs
Version | Publié le | Notes de version | |
---|---|---|---|
1.1.2 | Modifying image files |
||
1.1.1 | Modifying Mask-RCNN dataset |
||
1.0.1 | Image update |
||
1.0.0 |