This is a super duper fast implementation of the kmeans clustering algorithm. The code is fully vectorized and extremely succinct. It is much much faster than the Matlab builtin kmeans function. The kmeans++ seeding algorithm is also included (kseeds.m) for good initialization. Therefore, this package is not only for coolness, it is indeed practical.
Please try the demo script in the package.
Detail explanation of this algorithm can be found in following blog post:
http://statinfer.wordpress.com/2011/12/12/efficient-matlab-ii-kmeans-clustering-algorithm/
This function is now a part of the PRML toolbox (http://www.mathworks.com/matlabcentral/fileexchange/55826-pattern-recognition-and-machine-learning-toolbox).
Citation pour cette source
Mo Chen (2024). Kmeans Clustering (https://www.mathworks.com/matlabcentral/fileexchange/24616-kmeans-clustering), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
- AI and Statistics > Statistics and Machine Learning Toolbox >
- AI and Statistics > Statistics and Machine Learning Toolbox > Cluster Analysis and Anomaly Detection >
Tags
Remerciements
Inspiré par : Pattern Recognition and Machine Learning Toolbox
A inspiré : Wavelet Based Image Segmentation, k-means++, Kmeans, Kernel Learning Toolbox, Logistic Regression for Classification, Naive Bayes Classifier, Kernel Kmeans
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
kmeans/
Version | Publié le | Notes de version | |
---|---|---|---|
2.0.0.0 | tweak and require Matlab R2016b or later
|
||
1.9.0.0 | tuning
|
||
1.7.0.0 | Cleaning up |
||
1.5.0.0 | remove empty clusters according to suggestion |
||
1.4.0.0 | remove empty clusters according to suggestion |
||
1.3.0.0 | fix a bug for 1d data |
||
1.2.0.0 | update the files and description |
||
1.0.0.0 |