Maximum Inscribed Circle using Voronoi Diagram

A fast, subpixel accurate largest inner circle detection using Voronoi Diagrams
1,6K téléchargements
Mise à jour 15 août 2011

Afficher la licence

A sample application and a function for solving the maximum inscribed circle problem.
Unlike my other submission "Maximum Inscribed Circle using Distance Transform" (at http://www.mathworks.com/matlabcentral/fileexchange/30805-maximum-inscribed-circle-using-distance-transform), this algorithm is subpixel accurate. It operates only on the polygon and not the image points. Therefore, if the polygon is given in sub-pixels, the result will be accurate.
I use an O(n log(n)) algorithm as follows:
- Construct the Voronoi Diagram of the polygon.
- For Voronoi nodes which are inside the polygon:
- Find the node with the maximum distance to edges in P. This node is the centre of the maximum inscribed circle.

For more details on the problem itself please checkout my previous submission as mentioned above.

To speed things up, replace "inpolygon" function by Bruno Lunog's faster implementation "2D polygon interior detection" :
http://www.mathworks.com/matlabcentral/fileexchange/27840-2d-polygon-interior-detection

Copyright (c) 2011, Tolga Birdal <http://www.tbirdal.me>

Citation pour cette source

Tolga Birdal (2026). Maximum Inscribed Circle using Voronoi Diagram (https://fr.mathworks.com/matlabcentral/fileexchange/32543-maximum-inscribed-circle-using-voronoi-diagram), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2009b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Voronoi Diagram dans Help Center et MATLAB Answers
Version Publié le Notes de version
1.0.0.0