A Bayesian Adaptive Basis Algorithm for Single Particle Reconstruction

Version (7,39 Mo) par Alp
3D reconstruction algorithm for electron cryo-microscopy.
937 téléchargements
Mise à jour 5 avr. 2012

Afficher la licence

Traditional single particle reconstruction methods use either the Fourier or the delta function basis to represent the particle density map. We propose a more flexible algorithm that adaptively chooses the basis based on the data. Because the basis adapts to the data, the reconstruction resolution and signal-to-noise ratio (SNR) is improved compared to a reconstruction with a fixed basis. Moreover, the algorithm automatically masks the particle, thereby separating it from the background. This eliminates the need for ad-hoc filtering or masking in the refinement loop. The algorithm is formulated in a Bayesian maximum-a-posteriori framework and uses an efficient optimization algorithm for the maximization. Evaluations using simulated and actual cryogenic electron microscopy data show resolution and SNR improvements as well as the effective masking of particle from background.

These files provide a MATLAB implementation of our algorithm with a small simulated cryo-EM dataset for testing.

Citation pour cette source

Alp (2024). A Bayesian Adaptive Basis Algorithm for Single Particle Reconstruction (https://www.mathworks.com/matlabcentral/fileexchange/36040-a-bayesian-adaptive-basis-algorithm-for-single-particle-reconstruction), MATLAB Central File Exchange. Récupéré le .

Compatibilité avec les versions de MATLAB
Créé avec R2011b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
En savoir plus sur Biomedical Imaging dans Help Center et MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version