Image Compression

Version 1.0.0.0 (10,5 ko) par Luigi Rosa
Demo source code for image compression.
35K téléchargements
Mise à jour 20 avr. 2004

Afficher la licence

Image Compression

A collection of simple routines for image compression using different techniques.

BTCODE:
Image compression Using Block Truncation Coding.

PYRAMID:
Image compression based on Gaussian Pyramids.

DCTCOMPR:
Image compression based on Discrete Cosine Transform.

IMCOMPR:
Image compression based on Singular Value Decomposition.

The given codes can be also used in 2D noise suppression.

Notes:
The function "conv2fft" performs a 2D FFT-based convolution.
Type "help conv2fft" on MATLAB command window for more informations.

For a more detailed description see:

Ohad Gal's file submission
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=4328&objectType=file

Vallabha Hampiholi's file submission
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=4718&objectType=file

Type "helpwin functionname" on MATLAB command window to see the references and how to use these functions.

Please contribute if you find this software useful.
Report bugs to luigi.rosa@tiscali.it

------------------------------------------------------------------
Luigi Rosa
Via Centrale 27
67042 Civita di Bagno
L'Aquila --- ITALY
email luigi.rosa@tiscali.it
mobile +39 340 3463208

------------------------------------------------------------------

Citation pour cette source

Luigi Rosa (2024). Image Compression (https://www.mathworks.com/matlabcentral/fileexchange/4772-image-compression), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R13
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Remerciements

Inspiré par : JPEG Compression, Lossy Image Compression

A inspiré : Manchester

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.0.0.0

Files added: 2D and 1D FFT-based convolution.