GLCM_Features(glcm)
This code is a vectorized version of the code submitted by Avinash Uppuluri.
The speedup (tested for the same subset of features) for a 200x200x4 GLCM matrix is about:
- 300x with respect to the original, non-vectorized version
- 10x with respect to the Avinash Uppuluri's own vectorized version
- 7x with respect to the vectorized implementation by Patrik Brynolfsson
NOTE: Formulas of features used in this implementation are based solely on the paper by Haralick et al.:
Haralick RM, Shanmuga K, Dinstein I.: Textural features for image classification. IEEE Trans Syst Man Cybern 3: 610-621, 1973
Other implementations may use slightly different formulations of "Sum of square: variance", "sum variance" and "difference variance". Always make sure which version is more suitable in the given case.
Citation pour cette source
Pawel Kleczek (2025). GLCM_Features(glcm) (https://fr.mathworks.com/matlabcentral/fileexchange/56661-glcm_features-glcm), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
- Image Processing and Computer Vision > Image Processing Toolbox > Image Segmentation and Analysis > Texture Analysis >
Tags
Remerciements
Inspiré par : GLCM texture features
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
| Version | Publié le | Notes de version | |
|---|---|---|---|
| 1.4.0.0 | Only changed the description |
||
| 1.3.0.0 | - Fixed a bug related to hard-coded 3rd dimension of a GLCM matrix (was 4, now is size(GLCM,3)).
|
||
| 1.2.0.0 | Fixed bug in computation of `t` for `svarh`: length(p_xplusy) gave incorrect results if `p_xplusy` was a 3x1x4 matrix (i.e. when GLCM matrix was a 2x2xk matrix). |
||
| 1.1.0.0 | I've ensured that the current implementation of "Sum of square: variance", "sum variance" and "difference variance" conforms to the original paper by Haralick et al. |
||
| 1.0.0.0 |
