Deep Learning Tutorial Series
Note de l’éditeur : This file was selected as MATLAB Central Pick of the Week
The code provides hands-on examples to implement convolutional neural networks (CNNs) for object recognition. The three demos have associated instructional videos that will allow for a complete tutorial experience to understand and implement deep learning techniques.
The demos include:
- Training a neural network from scratch
- Using a pre-trained model (transfer learning)
- Using a neural network as a feature extractor
The corresponding videos for the demos are located here: https://www.mathworks.com/videos/series/deep-learning-with-MATLAB.html
The use of a GPU and Parallel Computing Toolbox™ is recommended when running the examples. Demo 3 requires Statistics and Machine Learning Toolbox™ in addition to the required products below.
Citation pour cette source
MathWorks Deep Learning Toolbox Team (2024). Deep Learning Tutorial Series (https://www.mathworks.com/matlabcentral/fileexchange/62990-deep-learning-tutorial-series), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
- Image Processing and Computer Vision > Computer Vision Toolbox > Recognition, Object Detection, and Semantic Segmentation >
Tags
Remerciements
A inspiré : TFCNN-BiGRU, Training 3D CNN models
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
DeepLearningDemos/
DeepLearningDemos/
Version | Publié le | Notes de version | |
---|---|---|---|
1.1.0.0 | minor bug fix in third file, "Demo_FeatureExtraction.mlx" :
|
||
1.0.0.0 | + Fixed typo in code. |