Character recognition using LeNet-5

A deep model (LeNet-5) trained on the MNIST dataset is used for character recognition.
625 téléchargements
Mise à jour 6 mai 2021

Afficher la licence

The LeNet-5 model implemented in this project has 3 convolutional layers and 2 fully-connected layers. It has 62,000 training parameters, and the image input size is 32*32. This model achieved 98.48% accuracy on the MNIST test set after training on its train set. MNIST is a dataset of handwritten digits with 70,000 centred fixed-size grey-scale images. More details about the dataset are available in:

http://yann.lecun.com/exdb/mnist

Run the GUI and select your image.

Citation pour cette source

Ebrahimi, Amir, et al. “Convolutional Neural Networks for Alzheimer’s Disease Detection on MRI Images.” Journal of Medical Imaging, vol. 8, no. 02, SPIE-Intl Soc Optical Eng, Apr. 2021, doi:10.1117/1.jmi.8.2.024503.

Afficher d’autres styles
Compatibilité avec les versions de MATLAB
Créé avec R2020b
Compatible avec les versions R2019b et ultérieures
Plateformes compatibles
Windows macOS Linux
Remerciements

Inspiré par : Pre-trained 2D LeNet-5

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.0.1

The relevant paper is published.

1.0.0