Modélisation et prédiction avec des réseaux NARX et TDNN (Time-Delay Neural Network)
Résoudre des problèmes de séries temporelles avec des réseaux de neurones dynamiques, notamment des réseaux avec feedback
Applications
Neural Net Time Series | Résoudre des problèmes de séries temporelles non linéaires avec des réseaux de neurones dynamiques |
Fonctions
timedelaynet | Time delay neural network |
narxnet | Nonlinear autoregressive neural network with external input |
narnet | Nonlinear autoregressive neural network |
layrecnet | Layer recurrent neural network |
distdelaynet | Distributed delay network |
train | Entraîner un réseau de neurones peu profond |
gensim | Générer un bloc Simulink pour la simulation d’un réseau de neurones peu profond |
adddelay | Add delay to neural network response |
removedelay | Remove delay to neural network’s response |
closeloop | Convert neural network open-loop feedback to closed loop |
openloop | Convert neural network closed-loop feedback to open loop |
ploterrhist | Plot error histogram |
plotinerrcorr | Plot input to error time-series cross-correlation |
plotregression | Tracer une régression linéaire |
plotresponse | Plot dynamic network time series response |
ploterrcorr | Plot autocorrelation of error time series |
genFunction | Generate MATLAB function for simulating shallow neural network |
Exemples et procédures
Design de base
- Modélisation de réseaux de neurones peu profonds et prédiction de séries temporelles
Réalisez une prédiction de séries temporelles avec l'application Neural Net Time Series et des fonctions en ligne de commande. - Design Time Series Time-Delay Neural Networks
Learn to design focused time-delay neural network (FTDNN) for time-series prediction. - Multistep Neural Network Prediction
Learn multistep neural network prediction. - Design Time Series NARX Feedback Neural Networks
Create and train a nonlinear autoregressive network with exogenous inputs (NARX). - Design Layer-Recurrent Neural Networks
Create and train a dynamic network that is a Layer-Recurrent Network (LRN). - Deploy Shallow Neural Network Functions
Simulate and deploy trained shallow neural networks using MATLAB® tools. - Deploy Training of Shallow Neural Networks
Learn how to deploy training of shallow neural networks. - Maglev Modeling
This example illustrates how a NARX (Nonlinear AutoRegressive with eXternal input) neural network can model a magnet levitation dynamical system.
Scalabilité et efficacité de l’apprentissage
- Shallow Neural Networks with Parallel and GPU Computing
Use parallel and distributed computing to speed up neural network training and simulation and handle large data. - Automatically Save Checkpoints During Neural Network Training
Save intermediate results to protect the value of long training runs. - Optimize Neural Network Training Speed and Memory
Make neural network training more efficient.
Solutions optimales
- Choose Neural Network Input-Output Processing Functions
Preprocess inputs and targets for more efficient training. - Configure Shallow Neural Network Inputs and Outputs
Learn how to manually configure the network before training using theconfigure
function. - Divide Data for Optimal Neural Network Training
Use functions to divide the data into training, validation, and test sets. - Choose a Multilayer Neural Network Training Function
Comparison of training algorithms on different problem types. - Improve Shallow Neural Network Generalization and Avoid Overfitting
Learn methods to improve generalization and prevent overfitting. - Train Neural Networks with Error Weights
Learn how to use error weighting when training neural networks. - Normalize Errors of Multiple Outputs
Learn how to fit output elements with different ranges of values.
Concepts
- How Dynamic Neural Networks Work
Learn how feedforward and recurrent networks work.
- Multiple Sequences with Dynamic Neural Networks
Manage time-series data that is available in several short sequences.
- Neural Network Time-Series Utilities
Learn how to use utility functions to manipulate neural network data.
- Exemples de jeux de données pour les réseaux de neurones peu profonds
Liste d’exemples de jeux de données à utiliser pour s’entraîner sur les réseaux de neurones peu profonds.
- Neural Network Object Properties
Learn properties that define the basic features of a network.
- Neural Network Subobject Properties
Learn properties that define network details such as inputs, layers, outputs, targets, biases, and weights.