Main Content

La traduction de cette page n'est pas à jour. Cliquez ici pour voir la dernière version en anglais.

Matrices creuses

Matrices creuses élémentaires, algorithmes de réorganisation, méthodes itératives, algèbre linéaire creux

Les matrices creuses offrent un stockage efficace des données de type double ou logical comportant une forte proportion de zéros. Alors que les matrices pleines (ou denses) stockent chaque élément en mémoire quelle que soit sa valeur, les matrices creuses stockent uniquement les éléments non nuls et leurs indices de ligne. C’est pourquoi l’utilisation de matrices creuses peut considérablement réduire la quantité de mémoire nécessaire au stockage des données.

Toutes les opérations arithmétiques, logiques et d’indexation prédéfinies dans MATLAB® sont applicables aux matrices creuses ou à une combinaison de matrices creuses et pleines. Les opérations sur des matrices creuses renvoient des matrices creuses. De même, les opérations sur des matrices pleines renvoient des matrices pleines. Pour plus d’informations, consultez Computational Advantages of Sparse Matrices et Constructing Sparse Matrices.

Fonctions

développer tout

spallocAllocate space for sparse matrix
spdiagsExtract nonzero diagonals and create sparse band and diagonal matrices
speyeSparse identity matrix
sprandSparse uniformly distributed random matrix
sprandnSparse normally distributed random matrix
sprandsymSparse symmetric random matrix
sparseCreate sparse matrix
spconvertImport from sparse matrix external format
issparseDetermine whether input is sparse
nnzNumber of nonzero matrix elements
nonzerosNonzero matrix elements
nzmaxAmount of storage allocated for nonzero matrix elements
spfunApply function to nonzero sparse matrix elements
sponesReplace nonzero sparse matrix elements with ones
spparmsSet parameters for sparse matrix routines
spyVisualize sparsity pattern of matrix
findRechercher des indices et des valeurs d’éléments non nuls
fullConvert sparse matrix to full storage
dissectNested dissection permutation
amdApproximate minimum degree permutation
colamdColumn approximate minimum degree permutation
colpermSparse column permutation based on nonzero count
dmpermDulmage-Mendelsohn decomposition
randpermRandom permutation of integers
symamdSymmetric approximate minimum degree permutation
symrcmSparse reverse Cuthill-McKee ordering
pcgSolve system of linear equations — preconditioned conjugate gradients method
lsqrSolve system of linear equations — least-squares method
minresSolve system of linear equations — minimum residual method
symmlqSolve system of linear equations — symmetric LQ method
gmresSolve system of linear equations — generalized minimum residual method
bicgSolve system of linear equations — biconjugate gradients method
bicgstabSolve system of linear equations — stabilized biconjugate gradients method
bicgstablSolve system of linear equations — stabilized biconjugate gradients (l) method
cgsSolve system of linear equations — conjugate gradients squared method
qmrSolve system of linear equations — quasi-minimal residual method
tfqmrSolve system of linear equations — transpose-free quasi-minimal residual method
equilibrateMatrix scaling for improved conditioning
ichol Incomplete Cholesky factorization
iluIncomplete LU factorization
eigsSubset of eigenvalues and eigenvectors
svdsSubset of singular values and vectors
normest2-norm estimate
condest1-norm condition number estimate
sprankStructural rank
etreeElimination tree
symbfactSymbolic factorization analysis
spaugmentForm least-squares augmented system
dmpermDulmage-Mendelsohn decomposition
etreeplotPlot elimination tree
treelayoutLay out tree or forest
treeplotPlot picture of tree
gplotPlot nodes and edges in adjacency matrix
unmeshConvert edge matrix to coordinate and Laplacian matrices

Rubriques

Exemples présentés