# pmtm

Multitaper power spectral density estimate

## Syntax

## Description

returns
Thomson’s multitaper power spectral density (PSD) estimate, `pxx`

= pmtm(`x`

)`pxx`

, of the
input signal `x`

using Discrete Prolate Spheroidal (Slepian) Sequences as tapers.

specifies the number of tapers or the averaging weights to apply when computing a PSD estimate
using Sine Tapers.`pxx`

= pmtm(`x`

,`m`

,'Tapers','sine')

`[___] = pmtm(___,`

returns the multitaper PSD estimate over the frequency range specified by
`freqrange`

)`freqrange`

.

`[___,`

returns the `pxxc`

] = pmtm(___,'ConfidenceLevel',`probability`

)`probability`

× 100% confidence intervals for the PSD
estimate in `pxxc`

.

`[___] = pmtm(___,'DropLastTaper',`

specifies whether `dropflag`

)`pmtm`

drops the last Slepian taper when computing the
multitaper PSD estimate.

`[___] = pmtm(___,`

combines the individual tapered PSD estimates using the method specified in
`method`

)`method`

. This syntax applies only to Slepian tapers.

`[___] = pmtm(`

uses the cell array `x`

,`dpss_params`

,___)`dpss_params`

to pass input arguments to
`dpss`

. This syntax applies only to Slepian tapers.

`pmtm(___)`

with no output arguments plots the multitaper
PSD estimate in the current figure window.

## Examples

## Input Arguments

## Output Arguments

## More About

## References

[1] McCoy, Emma J., Andrew T. Walden,
and Donald B. Percival. "Multitaper Spectral Estimation of Power Law Processes."
*IEEE ^{®} Transactions on Signal Processing* 46, no. 3 (March 1998): 655–68.
https://doi.org/10.1109/78.661333.

[2] Percival, Donald B., and Andrew T. Walden. *Spectral
Analysis for Physical Applications: Multitaper and Conventional Univariate
Techniques*. Cambridge; New York, NY, USA: Cambridge University Press,
1993.

[3] Riedel, Kurt S., and Alexander
Sidorenko. “Minimum Bias Multiple Taper Spectral Estimation.” *IEEE Transactions on Signal Processing* 43, no. 1 (January 1995): 188–95.
https://doi.org/10.1109/78.365298.

[4] Thomson, David J. "Spectrum estimation and harmonic analysis."
*Proceedings of the IEEE* 70, no. 9 (1982): 1055–96. https://doi.org/10.1109/PROC.1982.12433.

## Version History

**Introduced before R2006a**