Estimation spectrale
Analysez le contenu spectral de signaux échantillonnés de manière uniforme ou non uniforme avec periodogram
, pwelch
ou plomb
. Améliorez les estimations du périodogramme avec la réallocation. Déterminez la cohérence fréquentielle entre signaux. Estimez des fonctions de transfert à l’aide de mesures en entrée et en sortie. Étudiez des systèmes MIMO dans le domaine fréquentiel.
Applications
Signal Analyzer | Visualiser et comparer plusieurs signaux et spectres |
Fonctions
Rubriques
- Nonparametric Methods
Learn about the periodogram, modified periodogram, Welch, and multitaper methods of nonparametric spectral estimation.
- Detect a Distorted Signal in Noise
Use frequency analysis to characterize a signal embedded in noise.
- Measure the Power of a Signal
Estimate the width of the frequency band that contains most of the power of a signal. For distorted signals, determine the power stored in the fundamental and the harmonics.
- Amplitude Estimation and Zero Padding
Obtain an accurate estimate of the amplitude of a sinusoidal signal using zero padding.
- Bias and Variability in the Periodogram
Reduce bias and variability in the periodogram using windows and averaging.
- Compare the Frequency Content of Two Signals
Identify similarity between signals in the frequency domain.
- Find Periodicity Using Frequency Analysis
Spectral analysis helps characterize oscillatory behavior in data and measure the different cycles.
- Significance Testing for Periodic Component
Assess the significance of a sinusoidal component in white noise using Fisher's g-statistic.
- Cross Spectrum and Magnitude-Squared Coherence
Obtain the phase lag between sinusoidal components and identify frequency-domain correlation in a time series.
- Price Weather Derivatives (Financial Instruments Toolbox)
This example demonstrates a workflow for pricing weather derivatives based on historically observed temperature data.