Alternative to ginput for finding curve intersections with unevenly spaced data in MATLAB

5 vues (au cours des 30 derniers jours)
Is there a better way to determine the intersection of two curves in MATLAB, other than using ginput, especially when the data points are unevenly spaced and do not include the exact intersection point? How can I handle cases where one of my datasets forms two angled lines joined together, rather than a smooth curve?

Réponse acceptée

Matt J
Matt J le 8 Fév 2025
Modifié(e) : Matt J le 8 Fév 2025
Use fminbnd or fzero,
x=sort(rand(1,12)*5);
y1=[0,1,-1*x(3:end)+3+2*x(3)];
y2=2*x-3;
f=@(z) interp1(x,y1,z)-interp1(x,y2,z) ;
xmin=fzero(f,[min(x),max(x)]); ymin=interp1(x,y1,xmin); %intersection
h=plot(x,y1,'--gx', x,y2,'--b+',xmin,ymin,'ro');
h(3).MarkerFaceColor=h(3).Color; h(3).MarkerSize=8;
  1 commentaire
Bo
Bo le 8 Fév 2025
Instead of using sort, I use [X,ia,ic] = unique(x); y1 = y1(ia); other than that, both fzero, and fminbnd works well, really appreciated!

Connectez-vous pour commenter.

Plus de réponses (2)

Alan Stevens
Alan Stevens le 8 Fév 2025
Create a function using interp1 for use with fzero. For example:
yfn = @(X,Y,x) interp1(X,Y,x);
X = [1,2,3,7,8,9];
Y1 = X;
Y2 = 15-X.^1.5;
x0 = 6;
xp = fzero(@(x0)fn(x0,X,Y1,Y2,yfn),x0);
disp(xp)
4.5710
yp = yfn(X,Y1,xp);
plot(X,Y1,'-o',X,Y2,'-+',xp,yp,'ks'),grid
xlabel('x'), ylabel('y')
function Z = fn(x,X,Y1,Y2,yfn)
Z = yfn(X,Y1,x)-yfn(X,Y2,x);
end

Star Strider
Star Strider le 8 Fév 2025
Modifié(e) : Star Strider le 9 Fév 2025
Another approach —
x = [linspace(0, 2.4) linspace(5.2, 7, 8)].'*1E-3;
y1 = [x(x<=2.4E-3)*580/2.4E-3; 500*ones(size(x(x>2.5E-3)))];
y2 = x*580/2.4E-3 - 450;
idx = find(diff(sign(y2 - y1)))
idx = 100
idxrng = max(1,idx) : min(numel(x),idx+1)
idxrng = 1×2
100 101
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
y2(idxrng)-y1(idxrng)
ans = 2×1
-450.0000 306.6667
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
xi = interp1((y1(idxrng)-y2(idxrng)), x(idxrng), 0)
xi = 0.0041
yi = interp1(x, y1, xi)
yi = 532.4229
figure
plot(x, y1, '.-', DisplayName="y_1")
hold on
plot(x, y2, '.-', DisplayName="y_2")
plot(xi, yi, 'sr', DisplayName="Intersection")
hold off
grid
legend(Location='best')
This approach finds the approximate index of the two lines and then interpolates to find the intersection points of the lines.
EDIT — (9 Feb 2025 at 1:43)
Corrected code.
.

Catégories

En savoir plus sur 2-D and 3-D Plots dans Help Center et File Exchange

Produits


Version

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by