Help !! How to use Genetic Algorithm for maximisation process as it is used for minimisation process?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
How to use Genetic Algorithm for maximisation process as it is used for minimisation process?
There are those who tell you other than the sign equation
but I can't change it cos it is an equation preserved by neural networks
This work improves the linear actuator so that it is sandwiched between LB and LU
I want the most value for ' y '
please help me
fitness=@fen;
nvars=2; % Number of variables
LB=[... ...]; %LB Lower bound on x
UB=[... ...]; %UB Upper bound on x
[x,y] = ga(fitness,nvars,[],[],[],[],LB,UB)
0 commentaires
Réponse acceptée
Star Strider
le 28 Août 2020
Negate the fitness function to select for the maximum:
[x,y] = ga(@(x)-fitness(x),nvars,[],[],[],[],LB,UB)
Note that this assumes ‘fitness’ has only one argument.
If you are passing extra parameters, this works:
[x,y] = ga(@(x)-fitness(x,a,b),nvars,[],[],[],[],LB,UB)
where ‘a’ and ‘b’ (and perhaps others) are the extra parameters.
3 commentaires
Plus de réponses (1)
Gifari Zulkarnaen
le 28 Août 2020
Make the fitness function to be 1/f(x) where f(x) is your original maximization.
Voir également
Catégories
En savoir plus sur Genetic Algorithm dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!