C1 = make1DOF(C2)
converts the two-degree-of-freedom PID controller C2 to one
degree of freedom by removing the terms that depend on coefficients
b and c.
G = tf(1,[1 0.5 0.1]);
C2 = pidtune(G,'pidf2',1.5)
C2 =
1 s
u = Kp (b*r-y) + Ki --- (r-y) + Kd -------- (c*r-y)
s Tf*s+1
with Kp = 1.12, Ki = 0.23, Kd = 1.3, Tf = 0.122, b = 0.664, c = 0.0136
Continuous-time 2-DOF PIDF controller in parallel form.
Model Properties
Convert the controller to one degree of freedom.
C1 = make1DOF(C2)
C1 =
1 s
Kp + Ki * --- + Kd * --------
s Tf*s+1
with Kp = 1.12, Ki = 0.23, Kd = 1.3, Tf = 0.122
Continuous-time PIDF controller in parallel form.
Model Properties
The new controller has the same PID gains and filter constant. However, make1DOF removes the terms involving the setpoint weights b and c. Therefore, in a closed loop with the plant G, the 2-DOF controller C2 yields a different closed-loop response from C1.
CM = tf(C2);
T2 = CM(1)*feedback(G,-CM(2));
T1 = feedback(G*C1,1);
stepplot(T2,T1,'r--')
1-DOF PID controller, returned as a pid or
pidstd object. C1 is in
parallel form if C2 is in parallel form, and standard
form if C2 is in standard form.
For example, suppose C2 is a continuous-time,
parallel-form 2-DOF pid2 controller. The relationship
between the inputs, r and y, and the
output u of C2 is given by:
Then C1 is a parallel-form 1-DOF
pid controller of the form:
The PID gains
Kp,
Ki, and
Kd, and the filter time
constant Tf are unchanged.
make1DOF removes the terms that depend on the
setpoint weights b and c. For more
information about 2-DOF PID controllers, see Two-Degree-of-Freedom PID Controllers.
The conversion also preserves the values of the properties
Ts, TimeUnit, Sampling
Grid, IFormula, and
DFormula.
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window.
Web browsers do not support MATLAB commands.
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.