La traduction de cette page n'est pas à jour. Cliquez ici pour voir la dernière version en anglais.
Boucles d’apprentissage personnalisées de Deep Learning
Personnaliser les boucles d’apprentissage du Deep Learning et les fonctions de perte
Si la fonction trainingOptions
ne propose pas les options d’apprentissage dont vous avez besoin pour votre tâche ou que les couches de sortie personnalisées ne supportent pas les fonctions de perte dont vous avez besoin, vous pouvez définir une boucle d’apprentissage personnalisée. Pour les réseaux qui ne peuvent pas être créés avec des graphes de couches, vous pouvez définir des réseaux personnalisés comme une fonction. Pour en savoir plus, veuillez consulter Define Custom Training Loops, Loss Functions, and Networks.
Fonctions
Rubriques
Boucles d’apprentissage personnalisées
- Train Deep Learning Model in MATLAB
Learn how to training deep learning models in MATLAB®. - Define Custom Training Loops, Loss Functions, and Networks
Learn how to define and customize deep learning training loops, loss functions, and networks using automatic differentiation. - Train Network Using Custom Training Loop
This example shows how to train a network that classifies handwritten digits with a custom learning rate schedule. - Specify Training Options in Custom Training Loop
Learn how to specify common training options in a custom training loop. - Define Model Loss Function for Custom Training Loop
Learn how to define a model loss function for a custom training loop. - Update Batch Normalization Statistics in Custom Training Loop
This example shows how to update the network state in a custom training loop. - Make Predictions Using dlnetwork Object
This example shows how to make predictions using adlnetwork
object by splitting data into mini-batches. - Monitor Custom Training Loop Progress
Track and plot custom training loop progress. - Train Network with Multiple Outputs
This example shows how to train a deep learning network with multiple outputs that predict both labels and angles of rotations of handwritten digits. - Classify Videos Using Deep Learning with Custom Training Loop
This example shows how to create a network for video classification by combining a pretrained image classification model and a sequence classification network. - Train Image Classification Network Robust to Adversarial Examples
This example shows how to train a neural network that is robust to adversarial examples using fast gradient sign method (FGSM) adversarial training. - Train Neural ODE Network
This example shows how to train an augmented neural ordinary differential equation (ODE) network. - Train Robust Deep Learning Network with Jacobian Regularization
Train a neural network that is robust to adversarial examples using a Jacobian regularization scheme. - Solve Ordinary Differential Equation Using Neural Network
This example shows how to solve an ordinary differential equation (ODE) using a neural network. - Assemble Multiple-Output Network for Prediction
This example shows how to assemble a multiple output network for prediction. - Run Custom Training Loops on a GPU and in Parallel
Speed up custom training loops by running on a GPU, in parallel using multiple GPUs, or on a cluster.
Fonctions de modèle
- Train Network Using Model Function
This example shows how to create and train a deep learning network by using functions rather than a layer graph or adlnetwork
. - Update Batch Normalization Statistics Using Model Function
This example shows how to update the network state in a network defined as a function. - Make Predictions Using Model Function
This example shows how to make predictions using a model function by splitting data into mini-batches. - Initialize Learnable Parameters for Model Function
Learn how to initialize learnable parameters for custom training loops using a model function. - Train Latent ODE Network with Irregularly Sampled Time-Series Data
This example shows how to train a latent ordinary differential equation (ODE) autoencoder with time-series data that is sampled at irregular time intervals. - Multivariate Time Series Anomaly Detection Using Graph Neural Network
This example shows how to detect anomalies in multivariate time series data using a graph neural network (GNN).
Différenciation automatique
- List of Functions with dlarray Support
View the list of functions that supportdlarray
objects. - Automatic Differentiation Background
Learn how automatic differentiation works. - Use Automatic Differentiation In Deep Learning Toolbox
How to use automatic differentiation in deep learning.
Accélération des fonctions de Deep Learning
- Deep Learning Function Acceleration for Custom Training Loops
Accelerate model functions and model loss functions for custom training loops by caching and reusing traces. - Accelerate Custom Training Loop Functions
This example shows how to accelerate deep learning custom training loop and prediction functions. - Check Accelerated Deep Learning Function Outputs
This example shows how to check that the outputs of accelerated functions match the outputs of the underlying function. - Evaluate Performance of Accelerated Deep Learning Function
This example shows how to evaluate the performance gains of using an accelerated function.