Opérations matricielles en virgule fixe dans Simulink
Blocs d'opérations mathématiques et matricielles en virgule fixe optimisés pour un code HDL efficace
Utilisez la bibliothèque de blocs Fixed-Point Designer™ pour effectuer des opérations mathématiques en virgule fixe.
Utilisez la bibliothèque de blocs Fixed-Point Designer optimisée HDL pour effectuer des opérations mathématiques et matricielles en virgule fixe, et pour générer un code HDL efficace. Ces blocs modélisent des design patterns pour les systèmes d'équations linéaires et les opérations matricielles principales, comme la décomposition QR, pour une implémentation hardware efficace sur des FPGA. Générez du code HDL pour les designs qui intègrent ces blocs en utilisant HDL Coder™.
Blocs
Fonctions
Rubriques
Opérations mathématiques
- Implement Hardware-Efficient Hyperbolic Tangent
Implement a hardware-efficient hyperbolic tangent. - How to Use HDL Optimized Normalized Reciprocal
This example shows how and when to use thenormalizedReciprocal
function and the Normalized Reciprocal HDL Optimized block to compute the normalized reciprocal of an input. - Implement Hardware-Efficient Real Divide HDL Optimized
How to use the Real Divide HDL Optimized block. - Implement Hardware-Efficient Complex Divide HDL Optimized
How to use the Complex Divide HDL Optimized block. - Implement HDL Optimized Modulo By Constant
How to use the Modulo by Constant HDL Optimized block.
Généralités
- Choose a Block for HDL-Optimized Fixed-Point Matrix Operations
How to choose a block from the Fixed-Point Designer HDL Support library.
Solveurs de systèmes linéaires : Résoudre AX = B
- Implement Hardware-Efficient Real Burst Matrix Solve Using QR Decomposition
How to use the Real Burst Matrix Solve Using QR Decomposition block. - Implement Hardware-Efficient Real Burst Matrix Solve Using QR Decomposition with Tikhonov Regularization
This example shows how to use the Real Burst Matrix Solve Using QR Decomposition block to solve the regularized least-squares matrix equation - Implement Hardware-Efficient Complex Burst Matrix Solve Using QR Decomposition
How to use the Complex Burst Matrix Solve Using QR Decomposition block. - Implement Hardware-Efficient Complex Burst Matrix Solve Using QR Decomposition with Tikhonov Regularization
This example shows how to use the Complex Burst Matrix Solve Using QR Decomposition block to solve the regularized least-squares matrix equation - Implement Hardware-Efficient Real Partial-Systolic Matrix Solve Using QR Decomposition
How to use the Real Partial-Systolic Matrix Solve Using QR Decomposition block. - Implement Hardware-Efficient Real Partial-Systolic Matrix Solve Using QR Decomposition with Diagonal Loading
How to use the Real Partial-Systolic Matrix Solve Using QR Decomposition Block with diagonal loading. - Implement Hardware-Efficient Real Partial-Systolic Matrix Solve Using QR Decomposition with Tikhonov Regularization
This example shows how to use the Real Partial-Systolic Matrix Solve Using QR Decomposition block to solve the regularized least-squares matrix equation - Implement Hardware-Efficient Complex Partial-Systolic Matrix Solve Using QR Decomposition
How to use the Complex Partial-Systolic Matrix Solve Using QR Decomposition block. - Implement Hardware-Efficient Complex Partial-Systolic Matrix Solve Using QR Decomposition with Diagonal Loading
How to use the Complex Partial-Systolic Matrix Solve Using QR Decomposition Block with diagonal loading. - Implement Hardware-Efficient Complex Partial-Systolic Matrix Solve Using QR Decomposition with Tikhonov Regularization
This example shows how to use the Complex Partial-Systolic Matrix Solve Using QR Decomposition block to solve the regularized least-squares matrix equation - Use Hardware-Efficient Algorithm to Solve Systems of Complex-Valued Linear Equations
Solve a system of complex-valued linear equations using hardware-efficient code.
Solveurs de systèmes linéaires : Résoudre A'AX = B
- Implement Hardware-Efficient Real Burst Matrix Solve Using Q-less QR Decomposition
How to use the Real Burst Matrix Solve Using Q-less QR Decomposition block. - Implement Hardware-Efficient Real Burst Matrix Solve Using Q-less QR Decomposition with Tikhonov Regularization
This example shows how to use the Real Burst Matrix Solve Using QR Decomposition block to solve the regularized least-squares matrix equation - Implement Hardware-Efficient Complex Burst Matrix Solve Using Q-less QR Decomposition
How to use the Complex Burst Matrix Solve Using Q-less QR Decomposition block. - Implement Hardware-Efficient Complex Burst Matrix Solve Using Q-less QR Decomposition with Tikhonov Regularization
This example shows how to use the Complex Burst Matrix Solve Using QR Decomposition block to solve the regularized least-squares matrix equation - Implement Hardware-Efficient Real Burst Asynchronous Matrix Solve Using Q-less QR Decomposition
This example shows how to implement a hardware-efficient solution to the real-valued matrix equation A'AX=B using the Real Burst Asynchronous Matrix Solve Using Q-less QR Decomposition block. - Implement Hardware-Efficient Complex Burst Asynchronous Matrix Solve Using Q-less QR Decomposition
This example shows how to implement a hardware-efficient solution to the complex-valued matrix equation A'AX=B using the Complex Burst Asynchronous Matrix Solve Using Q-less QR Decomposition block. - Implement Hardware-Efficient Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition
How to use the Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition block. - Implement Hardware-Efficient Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Tikhonov Regularization
This example shows how to use the Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition block to solve the regularized least-squares matrix equation - Implement Hardware-Efficient Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition
How to use the Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition block. - Implement Hardware-Efficient Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Tikhonov Regularization
This example shows how to use the Complex Partial-Systolic Matrix Solve Using QR Decomposition block to solve the regularized least-squares matrix equation
Solveurs de systèmes linéaires : Résoudre A'AX = B avec une matrice A infiniment grande
- Implement Hardware-Efficient Real Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
This example shows how to use the hardware-efficient Real Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block. - Implement Hardware-Efficient Complex Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
This example shows how to use the hardware-efficient Complex Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block. - Implement Hardware-Efficient Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
How to use the Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block. - Implement Hardware-Efficient Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
How to use the Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block.
Factorisations matricielles : Décomposition QR
- Implement Hardware-Efficient Real Burst QR Decomposition
How to use the Real Burst QR Decomposition block. - Implement Hardware-Efficient Complex Burst QR Decomposition
How to use the Complex Burst QR Decomposition block. - Implement Hardware-Efficient Real Partial-Systolic QR Decomposition
How to use the Real Partial-Systolic QR Decomposition block. - Implement Hardware-Efficient Complex Partial-Systolic QR Decomposition
How to use the Complex Partial-Systolic QR Decomposition block. - Implement Hardware-Efficient QR Decomposition Using CORDIC in a Systolic Array
Implement Hardware-Efficient QR Decomposition Using CORDIC in a Systolic Array.
Factorisations matricielles : Décomposition QR sans Q
- Implement Hardware-Efficient Real Burst Q-less QR Decomposition
How to use the Real Burst Q-less QR Decomposition block. - Implement Hardware-Efficient Complex Burst Q-less QR Decomposition
How to use the Complex Burst Q-less QR Decomposition block. - Implement Hardware-Efficient Real Partial-Systolic Q-less QR Decomposition
How to use the Real Partial-Systolic Q-less QR Decomposition block. - Implement Hardware-Efficient Complex Partial-Systolic Q-less QR Decomposition
How to use the Complex Partial-Systolic Q-less QR Decomposition block.
Factorisations matricielles : Décomposition QR sans QR avec facteur d'oubli
- Implement Hardware-Efficient Real Burst Q-less QR with Forgetting Factor
This example shows how to use the hardware-efficient Real Burst Q-less QR Decomposition with Forgetting Factor Whole R Output block. - Implement Hardware-Efficient Complex Burst Q-less QR with Forgetting Factor
This example shows how to use the hardware-efficient Complex Burst Q-less QR Decomposition with Forgetting Factor Whole R Output block. - Implement Hardware-Efficient Real Partial-Systolic Q-less QR with Forgetting Factor
How to use the Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor block. - Implement Hardware-Efficient Complex Partial-Systolic Q-less QR with Forgetting Factor
How to use the Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor block.
Factorisations matricielles : Décomposition en valeurs singulières
- Implement HDL Optimized SVD in Feedforward Fashion Without Backpressure
This example shows how to implement a hardware-efficient singular value decomposition (SVD) using the Square Jacobi SVD HDL Optimized block in a feedforward fashion without backpressure. - Implement HDL Optimized SVD with Backpressure Signal and HDL FIFO Block
This example shows how to implement hardware-efficient singular value decomposition (SVD) using the Square Jacobi SVD HDL Optimized block with backpressure control and an HDL FIFO block. - Implement HDL Optimized SVD for Non-Square Matrix with Scalar Input and Simplified AXI4 Protocol
This example shows how to use the Non-Square Jacobi SVD HDL Optimized block to compute the singular value decomposition (SVD) of non-square matrices. - Compute SVD of Non-Square Matrices Using Square Jacobi SVD HDL Optimized Block by Forming Covariance Matrices
This example shows how to use the Square Jacobi SVD HDL Optimized block to compute the singular value decomposition (SVD) of non-square matrices by forming covariance matrices.
Détermination analytique des types de données à virgule fixe pour les solveurs de systèmes linéaires et les factorisations de matrices
- Algorithms to Determine Fixed-Point Types for Real Least-Squares Matrix Solve AX=B
Derivation of algorithms for determining fixed-point types for real least-squares matrix solve. - Determine Fixed-Point Types for Real Least-Squares Matrix Solve AX=B
Usefixed.realQRMatrixSolveFixedpointTypes
to determine fixed-point types for computation of the real least-squares matrix equation. - Determine Fixed-Point Types for Real Least-Squares Matrix Solve with Tikhonov Regularization
This example shows how to use thefixed.realQRMatrixSolveFixedpointTypes
function to analytically determine fixed-point types for the solution of the real least-squares matrix equation - Algorithms to Determine Fixed-Point Types for Complex Least-Squares Matrix Solve AX=B
Derivation of algorithms for determining fixed-point types for complex QR matrix solve. - Determine Fixed-Point Types for Complex Least-Squares Matrix Solve AX=B
Usefixed.complexQRFixedpointTypes
to determine fixed-point types for computation of the complex least-squares matrix equation. - Determine Fixed-Point Types for Complex Least-Squares Matrix Solve with Tikhonov Regularization
This example shows how to use thefixed.complexQRMatrixSolveFixedpointTypes
function to analytically determine fixed-point types for the solution of the complex least-squares matrix equation - Algorithms to Determine Fixed-Point Types for Real Q-less QR Matrix Solve A'AX=B
Derivation of algorithms for determining fixed-point types for real Q-less QR matrix solve. - Determine Fixed-Point Types for Real Q-less QR Matrix Solve A'AX=B
Usefixed.realQlessQRFixedpointTypes
to determine fixed-point types for computation of the real least-squares matrix equation. - Determine Fixed-Point Types for Real Q-less QR Matrix Solve with Tikhonov Regularization
This example shows how to use thefixed.realQlessQRMatrixSolveFixedpointTypes
function to analytically determine fixed-point types for the solution of the real least-squares matrix equation - Algorithms to Determine Fixed-Point Types for Complex Q-less QR Matrix Solve A'AX=B
Derivation of algorithms for determining fixed-point types for complex Q-less QR matrix solve. - Determine Fixed-Point Types for Complex Q-less QR Matrix Solve A'AX=B
Usefixed.complexQlessQRFixedpointTypes
to determine fixed-point types for computation of the complex least-squares matrix equation. - Determine Fixed-Point Types for Complex Q-less QR Matrix Solve with Tikhonov Regularization
This example shows how to use thefixed.complexQlessQRMatrixSolveFixedpointTypes
function to analytically determine fixed-point types for the solution of the complex least-squares matrix equation - Determine Fixed-Point Types for QR Decomposition
Usefixed.qrFixedpointTypes
to determine fixed-point types for computation of QR decomposition. - Determine Fixed-Point Types for Q-less QR Decomposition
Usefixed.qlessqrFixedpointTypes
to determine fixed-point types for computation of Q-less QR decomposition. - Estimate Standard Deviation of Quantization Noise of Real-Valued Signal
Usefixed.realQuantizationNoiseStandardDeviation
to estimate standard deviation of quantization noise. - Estimate Standard Deviation of Quantization Noise of Complex-Valued Signal
Usefixed.complexQuantizationNoiseStandardDeviation
to estimate standard deviation of quantization noise. - Compute Forgetting Factor Required for Streaming Input Data
Usefixed.forgettingFactor
andfixed.forgettingFactorInverse
to compute forgetting factor.